[1] S. Kitaoka, Y. Matsushima, C. Chen. Thermal cyclic fatigue behavior of porous ceramics for gas cleaning. Journal of the American Ceramic Society, 2004, 87(5): 906-913. https://doi.org/10.1111/j.1551-2916.2004.00906.x [2] P. S. Cheow, E. Z. C.Ting, M. Q. Tan. Transport and separation of proteins across platinum-coated nano porous alumina membranes. Electrochimica Acta, 2008, 53(14): 4669-4673. https://doi.org/10.1016/j.electacta.2008.01.070 [3] B. Naik, V. S. Prasad, N. N. Ghosh.Preparation of Ag nanoparticle loaded mesoporous γ-alumina catalyst and its catalytic activity for reduction of 4-nitrophenol. Powder Technology, 2012, 232: 1-6. https://doi.org/10.1016/j.powtec.2012.07.052 [4] J. Newnham, K. Mantri, M. H. Amin.Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2012, 37(2): 1454-1464. https://doi.org/10.1016/ j. ijhydene.2011.10.036 [5] B. H. Yoon, Y. H. Koh, C. S. Park, H. E. Kim. Generation of large pore channels for bone tissue engineering using camphene-based freeze casting. Journal of the American Ceramic Society, 2007, 90(6): 1744-1752. https://doi.org/10.1111/j.1551-2916.2007.01670.x [6] B. H. Yoon, W. Y. Choi, H. E. Kim, J. H. Kim, Y. H. Koh.Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta Materialia, 2008, 58(7): 537-540. https://doi.org/10.1016/j.scriptamat.2007.11.006 [7] M. Kitiwan, D. Atong. Effects of porous alumina support and plating time on electroless plating of palladium membrane. Journal of Materials Science & Technology, 2010, 26(12): 1148-1152. https://doi.org/10.1016/s1005-0302(11)60016-9 [8] M. Takahashi, R. L. Menchavez, M. Fuji, H. Takegami.Opportunities of porous ceramics fabricated by gel-casting in mitigating environmental issues. Journal of the European Ceramic Society, 2009, 29(5): 823-828. https://doi.org/10.1016/j.jeurceramsoc.2008.07.030 [9] C. R. Zou, C. R. Zhang, B. Li, S. Q. Wang, F. Cao.Microstructure and properties of porous silicon nitride ceramics prepared by gel-casting and gas pressure sintering. Materials & Design, 2013, 44: 114-118. https://doi.org/10.1016/j.matdes.2012.07.056 [10] S. Wang, L. Zhang, F. Han, W. C. Li, Y. Y. Xu, W. H. Qu, A. H. Lu. Diaminohexane-assisted preparation of coral-like, poly(benzoxazine)-based porous carbons for electrochemical energy storage. ACS Applied Materials & Interfaces, 2014, 6(14): 11101-11109. https://doi.org/10.1021/am5034796 [11] I. Akartuna, A. R. Studart, E. Tervoort, L. J. Gauckler. Macroporous ceramics from particle-stabilized emulsions. Advanced Materials, 2008, 20(24): 4717-4725. https://doi.org/10.1002/adma.200801888 [12] T. Ohji, M. Fukushima. Macro-porous ceramics: processing and properties. International Materials Reviews, 2012, 57(2): 115-122. https://doi.org/10.1179/1743280411y.0000000006 [13] A. R. Studart, U. T. Gonzenbach, E. Tervoort, L. J. Gauckler. Processing routes to macroporous ceramics: A Review. Journal of the American Ceramic Society, 2006, 89(6): 1771-1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x [14] D. W. Hutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21(24): 2529-2543. https://doi.org/10.1016/B978-008045154-1.50021-6 [15] N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. F. Demut, L. Schlier, T. Schlier, P. Greil. Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 2014, 16(6): 729-754. https://doi.org/10.1002/adem.201400097 [16] S. S. Leong, Y. W. Yee, W. F. Edith, T. B. Yen, Z. Q. Zhao, L. Zhao, Z. L. Tian, S. F. Yang. Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping Journal, 2017, 23(3): 611-623. https://doi.org/10.1108/RPJ-11-2015-0178 [17] F. H. Liu, Y. K. Shen, J. L. Lee. Selective laser sintering of a hydroxyapatite-silica scaffold on cultured MG63 osteoblasts in vitro. International Journal of Precision Engineering and Manufacturing, 2012, 13(3): 439-444. https://doi.org/10.1007/s12541-012-0056-9 [18] M. Castilho, C. Moseke, A. Ewald, U. Gbureck, J. Groll, I. Pires, J. Teßmar, E. Vorndran. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, 2014, 6(1): 15-22. https://doi.org/10.1088/1758-5082/6/1/015006 [19] X. Li, L. Zhang, X. Yin.Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3-D printing and pressure less sintering. Scripta Materialia, 2012, 67(4): 380-383. https://doi.org/10.1016/j.scriptamat.2012.05.030 [20] M. Lasgorceix, E. Champion, T. Chartier.Shaping by micro-stereolithography and sintering of macro-micro-porous silicon substituted hydroxyapatite. Journal of the European Ceramic Society, 2016, 36(4): 1091-1101. https://doi.org/10.1016/j.jeurceramsoc.2015.11.020 [21] W. Bian, D. Li, Q. Lian, X. Li, W. J. Zhang, K. Z. Wang, Z. M. Jin. Fabrication of a bioinspired beta-tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyping Journal, 2012, 18(1): 68-80. https://doi.org/10.1108/13552541211193511 [22] H. Windsheimer, N. Travitzky, A. Hofenauer, P. Greil. Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Advanced Materials, 2007, 19(24): 4515-4519. https://doi.org/10.1002/adma.200700789 [23] M. Allahverdi, S.C. Danforth, M. Jafari, A. Safari. Processing of advanced electroceramic components by fused deposition technique. Journal of the European Ceramic Society, 2001, 21(10-11): 1485-1490. https://doi.org/10.1016/s0955-2219(01)00047-4 [24] P. Erwin, D. Zhang, J. Ding. Ceramic robocasting: recent achievements, potential,future developments. Advanced Materials, 2018, 30(47): 180-189. https://doi.org/10.1002/adma.201802404 [25] J. Maurath, N. Willenbacher.3D printing of open-porous cellular ceramics with high specific strength. Journal of the European Ceramic Society, 2017, 37(15): 4833-4842. https://doi.org/10.1016/j.jeurceramsoc.2017.06.001 [26] C. Minas, D. Carnelli, E. Tervoort, A. Studart. 3D printing of emulsions and foams into hierarchical porous ceramics. Advanced Materials, 2016, 28(45): 9993-9999. https://doi.org/10.1002/adma.201603390 [27] S. F. S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H. S. C. Metselaar. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, 2015, 16(3): 533-542. https://doi.org/10.1088/1468-6996/16/3/033502 [28] A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Muller.Structural and material approaches to bone tissue engineering in powder-based tree dimensional printing. Acta Biomaterialia, 2011, 7(3): 907-920. https://doi.org/10.1016/j.actbio.2010.09.039 [29] K. Cai, J. Sun, Q. Li, R. Wang, B. Li, J. Zhou.Direct-writing construction of layered meshes from nanoparticles-vaseline composite inks: rheological properties and structures. Applied Physics A, 2011, 102: 501-507. Direct-writing construction of layered meshes from nanoparticles-vaseline composite inks: rheological properties and structures. Applied Physics A, 2011, 102: 501-507. http://doi.org/10.1007/s00339-010-5955-y [30] B. G. Compton, J. A. Lewis. 3D-printing of lightweight cellular composites. Advanced Materials, 2014, 26(34): 5930-5935. https://doi.org/10.1002/adma.201401804 [31] C. Minas, D. Carnelli, E. Tervoort, A. R. Studart. 3D printing of emulsions and foams into hierarchical porous ceramics. Advanced Materials, 2016, 28(45): 2213-2220. https://doi.org/10.1002/adma. 201603390 [32] J. E. Smay, J. Cesarano III, J. A. Lewis.Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, 2002, 18(14): 5429-5437. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, 2002, 18(14): 5429-5437. http://doi.org/10.1021/la0257135 [33] Y. Li, L. Chen, L. Hong, K. Ran, Y. H. Zhan, Q. Chen.Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder. Journal of Alloys and Compounds, 2019, 785: 838-845. Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder. Journal of Alloys and Compounds, 2019, 785: 838-845. http://doi.org/10.1016/j.jallcom.2019.01.114 [34] L. M. Bezerril,C. L. de Vasconcelos, T. N. C. Dantas, M. R. Pereira, J. L. C. Fonseca. Rheology of chitosan-kaolin dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 87(1-3): 24-28. https://doi.org/10.1016/j.colsurfa.2006.03.017 [35] A. Wonisch, P. Polfer, T. Kraft, A. Dellert, A. Heunisch, A. Roosen. A comprehensive simulation scheme for tape casting: from flow behavior to anisotropy development. Journal of the American Ceramic Society, 2011, 94(7): 2053-2060. https://doi.org/10.1111/j.1551-2916.2010.04358.x [36] M. M. Cross. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. Journal of Colloid Science, 1965, 20(5): 417-437. https://doi.org/10.1016/0095-8522(65)90022-x [37] F. Fraga, S. Burgo, E. Rodríguez Núñez. Curing kinetic of the epoxy system badge n=0/1,2 DCH by fourier transform infrared spectroscopy (FTIR). Journal of Applied Polymer Science, 2001, 82(13): 3366-3372. https://doi.org/10.1002/app.2195 [38] S. Z. Yu, T. K. S.Wong, X. Hu, T. K. Goh. Effect of processing temperature on the properties of sol-gel-derived mesoporous silica films. Thin Solid Films, 2004, 462-463: 306-310. https://doi.org/10.1016/j.tsf.2004.05.022 [39] J. Oh, H. Imai, H. Hirashima. Direct deposition of silica films using silicon alkoxide solution. Journal of Non-Crystalline Solids, 1998, 241(2-3): 91-97. https://doi.org/10.1016/s0022-3093(98)00772-8 [40] D. Kong, H. Yang, S. Wei, D. Y. Li, J. B. Wang.Gel-casting without de-airing process using silica sol as a binder. Ceramics International, 2007, 33(2): 133-139. https://doi.org/10.1016/j.ceramint.2005.08.006 [41] T. Suratwala, M. L. Hanna, P. Whitman.Effect of humidity during the coating of Stöber silica sols. Journal of Non-Crystalline Solids, 2004, 349: 368-376. https://doi.org/10.1016/j.jnoncrysol.2004.08.214 [42] H. Z. Guo, S. Yu.Handbook of Practical Refractory Materials. Beijing: China Building Materials Industry Press, 2000. [43] M. F. M.Zawrah, N. M. Khali. Effect of mullite formation on properties of refractory castables. Ceramics International, 2001, 27(6): 689-694. Zawrah, N. M. Khali. Effect of mullite formation on properties of refractory castables. Ceramics International, 2001, 27(6): 689-694. http://doi.org/10.1016/s0272-8842(01)00021-9 [44] M. Xu, D. Zhai, J. Chang, C. T. Wu.In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Acta Biomaterialia, 2014, 10(1): 463-476. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Acta Biomaterialia, 2014, 10(1): 463-476. http://doi.org/10.1016/j.actbio.2013.09.011 [45] H. F. Shao, X. R. Ke, A. Liu, M. Sun, Y. He, Xi. Y. Yang, J. Z. Fu, Y. M. Liu, L. Zhang, G. J. Yang, S. Z. Xu, Z. R. Gou. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue material interface pore architecture in thin-wall bone defect. Biofabrication, 2017, 9(2): 25-30. Xi. Y. Yang, J. Z. Fu, Y. M. Liu, L. Zhang, G. J. Yang, S. Z. Xu, Z. R. Gou. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue material interface pore architecture in thin-wall bone defect. Biofabrication, 2017, 9(2): 25-30. http://doi.org/10.1088/1758-5090/aa663c [46] J. J. Liu, B. Ren, T. B. Zhu, S. Yan, X. Y. Zhang, W. L. Huo, Y. G. Chen, J. L. Yang.Enhanced mechanical properties and decreased thermal conductivity of porous alumina ceramics by optimizing pore structure. Ceramics International, 2018, 44(11): 13240-13246. Enhanced mechanical properties and decreased thermal conductivity of porous alumina ceramics by optimizing pore structure. Ceramics International, 2018, 44(11): 13240-13246. http://doi.org/10.1016/j.ceramint.2018.04.151 [47] Y. W. Moon, K. H. Shin, Y. H. Koh, H. D. Jung, H. E. Kim.Three-dimensional ceramic/camphene-based co-extrusion for unidirectionally macro channeled alumina ceramics with controlled porous walls. Journal of the American Ceramic Society, 2014, 97(1): 32-34. Three-dimensional ceramic/camphene-based co-extrusion for unidirectionally macro channeled alumina ceramics with controlled porous walls. Journal of the American Ceramic Society, 2014, 97(1): 32-34. http://doi.org/10.1111/jace.12634 [48] Y. W. Moon, K. H. Shin, Y. H. Koh, W. Y. Choi, H. E. Kim.Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. Journal of the European Ceramic Society, 2012, 32(5): 1029-1034. Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. Journal of the European Ceramic Society, 2012, 32(5): 1029-1034. http://doi.org/10.1016/j.jeurceramsoc.2011.11.035 [49] A. R. Jamaludin, S. R. Ksim, A. K. Ismail, M. Z. Abdullah, Z. A. Ahmad.The effect of sago as binder in the fabrication of alumina foam through the polymeric sponge replication technique. Journal of the European Ceramic Society, 2015, 35(6): 1905-1914. The effect of sago as binder in the fabrication of alumina foam through the polymeric sponge replication technique. Journal of the European Ceramic Society, 2015, 35(6): 1905-1914. http://doi.org/10.1016/j.jeurceramsoc.2014.12.005 |