[1] L. Prost, A. Pauillac. Hydraulically setting refractory compositions. US3802894A (1974) and FR6934405A (1969). [2] B. Myhre.Microsilica in alumina based ultralow-cement castables. The effect of microsilica additions on flow. Proceedings of XXIII ALAFAR Congress, Puerto Vallarta, Mexico, 1994: 133-135. [3] B. Myhre, A.M. Hundere.The use of particle size distribution in development of refractory castables. Proceedings of XXV ALAFAR Congress, San Carlos de Bariloche, Argentina, 1996: 1-4. [4] F. Tomšu, S. Palčo.From conventional refractory castables to actual high-quality hydraulic bonded products—development during the last forty years. Interceram: International Ceramic Review, 2011, 60(3): 202-207. [5] C. Parr, J. M. Auvray, M. Szepizdyn, C. Wöhrmeyer, C. Zetterstrom.A review of bond systems for monolithic castable refractories. Refractories Worldforum, 2015, 7(2): 63-72. [6] J. M. Canon, T. P. Sandler, J. D. Smith, R. E. Moore.Effect of organic fiber addition on the permeability of refractory concrete. Proceedings of 5th UNITECR, New Orleans, USA, 1997: 583-592. [7] R. Salomão, V. C. Pandolfelli, L. R. M.Bittencourt. Advances on the understanding of the role of polymeric fibers as drying additives for refractory castables. Proceedings of 9th UNITECR, Orlando, USA, 2005: 816-820. [8] P. Meunier, L. Ronsoux.Permeability and dehydration of refractory castables. Proceedings of 9th UNITECR, Orlando, 2005: 799-803. [9] M. D. M.Innocentini, R. Salomão, C. Ribeiro, V. C. Pandolfelli, R. P. Rettore, L.R.M. Bittencourt. Permeability of fiber-containing refractory castables—part 1. American Ceramic Society Bulletin, 2002, 81(7): 34-38. [10] R. Salomão, F. A. Cardoso, M. D. M.Innocentini, V. C. Pandolfelli, L. R. M. Bittencourt. Effect of polymeric fibers on refractory castable permeability. American Ceramic Society Bulletin, 2003, 82(4): 51-56. [11] H. Peng, B. Myhre.Dring behaviour and explosion resistance of no-cement refractory castables. Refractories Worldforum, 2019, 11(4): 62-66. [12] A. P. Luz, M. H. Moreira, R. Salomão, M. A. L.Braulio, V. C. Pandolfelli. Drying behavior of dense refractory castables. Part 2—Drying agents and design of heating schedules. Ceramics International, 2022, 48(3): 2965-2987. [13] H. Peng, B. Myhre.Improved explosion resistance of low cement refractory castables using drying agents. International Journal of Ceramic Engineering and Science, 2022, 4(2): 84-91. [14] J. Soudier, S Q Fallavier. Q D NCC: Quick drying no cement castables. A novel non-cementitious mineral bond permitting extreme rapid dry out of monolithic refractory linings. Proceedings of 12th UNITECR, Kyoto, Japan, 2011: 1-D-17. [15] P. Malkmus, P. Meunier, J. Soudier.Time, energy and cost saving during monolithic refractory lining installation by combining quick dry technology and gunning technics. Proceedings of 13th UNITECR, Victoria, Canada, 2013: 1007-1012. [16] M. Nouri-Khezrabad, M.A.L.Braulio, V.C. Pandolfelli, F. Golestani-Fard, H.R. Rezaie. Nano-bonded refractory castables. Ceramics Inter-national, 2013, 39(4): 3479-3497 [17] U. Klippel, J. Soudier, J. Lee, A Wahyu.Colloidal silica sol bonded castables for high temperature applications. China’s Refractories, 2015, 24(1): 51-56. [18] P. Meunier, J.-C. Mindeguia, P. Pimienta. Mass, temperature and pressure measurements during the dry out of refractory castables. Proceedings of 51st International Colloquium on Refractories, Aachen, 2008: 95-98. [19] P. Meunier, J. Soudier.The drying of refractory castables: from tests to models. Proceedings of 11th UNITECR, Salvador, Brazil, 2009: 221-224. [20] A. P. Luz, M. H. Moreira, M. A. L.Braulio, C. Parr, V. C. Pandolfelli. Drying behaviour of dense refractory ceramic castables. Part 1—General aspects and experimental techniques used to assess water removal. Ceramics International, 2012, 47(16): 22246-22268. [21] P. Meunier, P. Ermtraud.Methods to assess the drying ability of refractory castables. Proceedings of 13th UNITECR, Victoria, Canada, 2013: 959-964. [22] G. Palmer, J. Cobos, J. Millard, T. Howes.The accelerated drying of refractory concrete—part I: a review of current understanding. Refractories Worldforum, 2014, 6(2): 75-83. [23] G. Palmer, J. Cobos, J. Millard, T. Howes.The accelerated drying of refractory concrete—Part 2 numerical modelling. Refractories Worldforum, 2014, 6(4): 89-97. [24] K. G. Fey, I. Riehl, R. Wulf, U. Gross.Pressure driven heat-up curves—a numerical and experimental investigation. International Journal of Thermal Sciences, 2017, 113: 1-9. [25] K. G. Fey, I. Riehl, R. Wulf, U. Gross.First heat-up of 1D multi-layer walls and 2D geometries consisting of refractory concrete. International Journal of Thermal Sciences, 2017, 116: 159-171. [26] K. G. Fey, I. Riehl, R. Wulf, U. Gross.Experimental and numerical investigation of the first heat-up of refractory concrete. International Journal of Thermal Sciences, 2016, 100: 108-125. [27] M. H. Moreira, S. Dal Pont, R. F. Ausas, T. M. Cunha, A. P. Luz, V. C. Pandolfelli.Direct comparison of multi and single-phase models depicting the drying process of refractory castables. Open Ceramics, 2021, 6: 100111. [28] M. H. Moreira, S. Dal Pont, R. F. Ausas, A. P. Luz, T. M. Cunha, C. Parr, V. C. Pandolfelli.Main trends on the simulation of the drying of refractory castables—review. Ceramics International, 2021, 47(20): 28086-28105. [29] M. Schnabel, A. Buhr, J. Dutton.Rheology of high performance alumina and spinel castables. Refractories Worldforum, 2012, 4(2): 95-100. [30] G. Routschka.Thermal conductivity of refractory castables. Interceram, 1988, 37(3): 24-33. [31] Salomao, R., Pandolfelli, V.Dryout temperature-vapor pressure profile of polymeric fiber containing refractory castables. Ceramics International, 2013, 39(6): 7217-7222. [32] D. L. Hipps, J.B. Brown.Internal pressure measurements for control of explosive spalling in refractory castables. American Ceramic Society Bulletin, 1984, 63(7): 905-910. [33] Bogan J.Dryout of refractory castables. Proceedings of the 39th Symposium on Refractories, St Louis Section Meeting, 2003. |