[1] Lourenço PB, Rots JG, Blaauwendraad J.Two approaches for the analysis of masonry structures: micro and macro-modeling. Heron (Delft University of Technology), 1995, 40(4): 313-340 (http://resolver.tudelft.nl/uuid:c39b29ab-3c75-47db-9cb5-bf2b1c678f1f. [2] Rafiee A. Contribution à l’étude de la stabilité des massifs rocheux fracturés: caractérisation de la fracturation in situ, géostatistique et mécanique des milieux discrets[Dissertation (in French)]. Montpellier: University of Montpellier II, 2008 (https://theses.hal.science/tel-00293695). [3] Fouchal F, Lebon F, Titeux I. Contribution to the modelling of interfaces in masonry construction. Construction and Building Materials, 2009, 23(6): 2428-2441 (https://doi.org/10.1016/j.conbuildmat.2008.10.011). [4] Gajjar PN, Ali M, Sayet T, Gasser A, Blond E, Pereira JM, Lourenço PB. Numerical study on the nonlinear thermomechanical behaviour of refractory masonry with dry joints. Engineering Structures, 2023, 291: 116468 (https://doi.org/10.1016/j.engstruct.2023.116468). [5] Hou A, Jin S, Harmuth H, Gruber D. A method for steel ladle lining optimization applying thermomechanical modeling and Taguchi approaches. JOM, 2018, 70: 2449-2456 (https://doi.org/10.1007/s11837-018-3063-1). [6] Samadi S, Jin S, Gruber D, Harmuth H. Thermomechanical finite element modelling of steel ladle containing alumina spinel refractory lining. Finite Elements in Analysis & Design, 2022, 206: 103762 (https://doi.org/10.1016/j.finel.2022.103762). [7] Fang Linfang, Su Fuyong, Kang Zhen, Zhu Haojun. Finite element (FE) analysis of thermal stress in production process of multi-layer lining ladle. Case Studies in Thermal Engineering, 2024, 57: 104307 (https://doi.org/10.1016/j.csite.2024.104307). [8] Nguyen TMH, Blond E, Gasser A, Prietl T. Mechanical homo-genisation of masonry without mortar. European Journal of Mechanics A/Solids, 2009, 28(3): 535-544 (https://doi:10.1016/j.euromechsol. 2008.12.003). [9] Lourenço PB, Milani G, Tralli A, Zucchini A. Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering, 2007, 34(11): 1443-1457 (https://cdnsciencepub.com/doi/10.1139/L07-097). [10] Pegon P, Anthoine A. Numerical strategies for solving continuum damage problems with softening: Application to the homogenization of masonry. Computers & Structures, 1997, 64(1-4): 623-642 (https://doi.org/10.1016/S0045-7949(96)00153-8). [11] Brulin J, Blond E, de Bilbao E, Rekik A, Landreau M, Gasser A, Colleville Y. Methodology for brick/mortar interface strength characterization at high temperature. Construction and Building Materials, 2020, 265: 120565 (https://doi.org/10.1016/j.conbuildmat.2020.120565). [12] Ali M, Oliveira RLG, Pereira JM, Rodrigues JP, Lourenço PB, Marschall HU, Sayet T, Gasser A, Blond E. Experimental characterization of the nonlinear thermomechanical behaviour of refractory masonry with dry joints. Construction and Building Materials, 2023, 364: 129960 (https://doi.org/10.1016/j.conbuildmat.2022.129960). [13] M. Ali. Nonlinear thermomechanical modelling of refractory masonry linings[Dissertation]. Orléans: University of Orléans, 2021 (https://theses.univ-orleans.fr/public/2021ORLE3197_va.pdf). [14] Raijmakers TMJ, Vermeltfoort AT.Deformation controlled tests in masonry shear walls. Report B-92-1156, TNO-Bouw, Delft, The Netherlands, 1992 (in Dutch). [15] Marfia S, Sacco E. Multiscale damage contact-friction model for periodic masonry walls. Computer Methods in Applied Mechanics and Engineering, 2012, 205-208: 189-203 (https://doi.org/10.1016/j.cma.2010.12.024). [16] Brulin J, Gasser A, Rekik A, Blond E, Roulet F. Thermomechanical modelling of a blast furnace hearth. Construction and Building Materials, 2022, 326: 126833 (https://doi.org/10.1016/j.conbuildmat.2022.126833). [17] Brulin J, Rekik A, Josserand L, Blond E, Gasser A, Roulet F. Characterization and modelling of a carbon ramming mix used in high-temperature industry. International Journal of Solids and Structures, 2011, 48(5): 854-864 (doi:10.1016/j.ijsolstr.2010.11.024). [18] Samadi S, Jin S, Gruber D, Harmuth H, Schachner S. Statistical study of compressive creep parameters of an alumina spinel refractory. Ceramics International, 2020, 46(10): 14662-14668 (https://doi.org/10.1016/j.ceramint.2020.02.267). [19] Tsuda M, Takemura E, Asada T, Ohno N, Igari T. Homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures: Numerical analysis and macroscopic constitutive modelling. International Journal of Mechanical Sciences, 2010, 52(5): 648-656 (https://doi.org/10.1016/j.ijmecsci.2009.06.007). [20] Ali M, Sayet T, Gasser A, Blond E. Computational homogenization of elastic-viscoplastic refractory masonry with dry joints. International Journal of Mechanical Sciences, 2021, 196: 106275 (https://doi.org/10.1016/j.ijmecsci.2021.106275). |